
Semantically Aware Contention Management for

Distributed Applications

Matthew Brook, Craig Sharp, and Graham Morgan

School of Computing Science, Newcastle University

{m.j.brook1, craig.sharp, graham.morgan}@ncl.ac.uk

Abstract. Distributed applications that allow replicated state to deviate in fa-

vour of increasing throughput still need to ensure such state achieves consis-

tency at some point. This is achieved via compensating conflicting updates or

undoing some updates to resolve conflicts. When causal relationships exist

across updates that must be maintained then conflicts may result in previous

updates also needing to be undone or compensated for. Therefore, an ability to

manage contention across the distributed domain to pre-emptively lower con-

flicts as a result of causal infringements without hindering the throughput

achieved from weaker consistency is desirable. In this paper we present such a

system. We exploit the causality inherent in the application domain to improve

overall system performance. We demonstrate the effectiveness of our approach

with simulated benchmarked performance results.

Keywords. replication, contention management, causal ordering

1 Introduction

A popular technique to reduce shared data access latency across computer networks

requires clients to replicate state locally; data access actions (reads and/or writes)

become quicker as no network latency will be involved. An added benefit of such an

approach is the ability to allow clients to continue processing when disconnected from

a server. This is of importance in the domains of mobile networks and rich Internet

clients where lack of connectivity may otherwise inhibit progress.

State shared at the client side still requires a level of consistency to ensure correct

execution. This level is usually guaranteed by protocols implementing eventual con-

sistency. In such protocols, reconciling conflicting actions that are a result of clients

operating on out-of-date replicas must be achieved. In this paper we assume a strict

case of conflict that includes out-of-date reads. Such scenarios are typical for rich

Internet clients where eventual agreement regarding data provenance during runtime

can be important.

Common approaches to reconciliation advocate compensation or undoing previous

actions. Unfortunately, the impact of either of these reconciliation techniques has the

potential to invalidate the causality at the application level within clients (semantic

causality): all tentative actions not yet committed to shared state but carried out on the

mailto:graham.morgan%7d@ncl.ac.uk

local replica may have assumed previous actions were successful, but now require

reconciliation. This requires tentative actions to be rolled back. For applications re-

quiring this level of client-local causality, the impact of rolling back tentative actions

has a significant impact on performance; they must rollback execution to where the

conflict was discovered.

Eventually consistent applications exhibiting strong semantic causality that need to

rollback in the presence of conflicts are similar in nature to transactions. Transactions,

although offering stronger guarantees, abort (rollback state changes) if they can’t be

committed. In recent years transactional approaches have been used for regulating

multi-threaded accesses to shared data objects. A contention manager has been shown

to improve performance in the presence of semantic causality across a multi-threaded

execution. A contention manager determines which transactions should abort based

on some defined strategy relating to the execution environment.

In this paper we present a contention management scheme for distributed applica-

tions where maintaining semantic causality is important. We extend our initial idea

[10] by dynamically adapting to possible changes in semantic causality at the applica-

tion layer. In addition, we extend our initial idea of a single server based approach to

encompass n-tier architectures more typical of current server side architectures.

In section 2 we describe background and related work, highlighting the notion of

borrowing techniques from transactional memory to benefit distributed applications.

In section 3 we describe the design of our client/server interaction scenario. In section

4 we describe our contention management approach with enhanced configurability

properties. In section 5 we present results from our simulation demonstrating the

benefits our approach can bring to the system described in section 3.

2 Background and Related Work

Our target application is typically a rich Internet client that maintains replicas of

shared states at the client side and wishes to maintain semantic causality. Such an

application could relate to e-commerce, collaborative document editing or any appli-

cation where the provenance of interaction must be accurately captured.

2.1 Optimistic replication

Optimistic protocols allow for a deviation in replica state to promote overall system

throughput. They are ideal for those applications that can tolerate inconsistent state in

favour of instant information retrieval (e.g., search engines, messaging services). The

guarantee afforded to the shared state is eventual consistency [3], [4].

Popular optimistic solutions such as Cassandra [5] and Dynamo [6] may be capable

of recognising causal infringement, but do not provision rollback schemes to enforce

semantic causality requirements at the application layer within their design. They are

primarily designed, and work best, for scalable deployment over large clusters of

servers. They are not designed for distributed clients to maintain replication of shared

state. However, earlier academic work did consider client-based replication. Bayou

[7] and Icecube [8] [9] do attempt to maintain a degree of causality, but only at the

application programmer’s discretion. In such systems the application programmer

may specify the extent of causality, preventing a total rollback and restart. This has

the advantage of exploiting application domains to improve availability and timeli-

ness, but does complicate the programming of such systems as the boundary between

protocol and application overlap. In addition, the programmer may not be able to

predict the semantic causality accurately.

2.2 Transactions

Transactions offer a general platform to build techniques for maintaining causality

within replication accesses at the client side that does not require tailoring based on

application semantics. Unfortunately, they impose a high overhead to an application

that negates the scalable performance expected from optimistic replication: maintain

ordering guarantees for accesses at the server and clients complete with persistent

fault-tolerance.

Transactional memory [12] approaches found in multi-threaded programming

demonstrate fewer of such guarantees (e.g., persistence). In addition, unlike typical

transactions in database processing multi-threaded programs present a high degree of

semantic causality (threads executing and repeatedly sharing state). Therefore, it is no

surprise to learn that they have been shown to help improve overall system throughput

by judicial use of a contention manager [1] [2] [13]. Although no single contention

manager works for all application types [14], dynamism can be used to vary the con-

tention strategy.

2.3 Contribution

In our previous work we successfully borrowed the concept of contention man-

agement from transactional memory and described a contention manager that may

satisfy our rich Internet client setting [10]. We derived our own approach based on

probability of data object accesses by clients. Unfortunately, the approach had limita-

tions: (1) it was static and could not react to changes in application behaviour (i.e.,

probability of object accesses changing); (2) it worked on a centralised server (i.e., we

could not utilise scalability at the server side). In this paper we propose solutions to

both these problems and present a complete description of our eventually consistent

protocol (which we didn’t present earlier) with the dynamic version of our semanti-

cally aware contention manager.

3 System Design

Our contention management protocol is deployed within a three-tier server side archi-

tecture as illustrated in Fig. 1. The load balancer initially determines which applica-

tion server to direct client requests to. A sticky session is then established such that all

messages from one client are always directed to the same application server. Commu-

nication channels exhibit FIFO qualities but message loss is possible. We model this

type of communication channel to reflect a typical TCP connection with the possibil-

ity of transient connectivity of clients, a requirement in many rich Internet client ap-

plications.

Data accesses are performed locally on a replication of the database state at the cli-

ent side. In our evaluation we used a complete replica, but this could be partial based

on a client’s ability to gain replica state on initialisation of a client. Periodically cli-

ents inform the application server of these data accesses. An application server re-

ceives these access notifications and determines whether these accesses are valid

given the current state as maintained at the database. Should the updates be valid, the

database state is updated to reflect the changes the client has made locally. However,

if the update results in an irreconcilable conflict then the client is notified. When the

client learns that a previous action was not successful, the client rolls back to the point

of execution where this action took place and resumes execution from this point.

Fig. 1. System Design

3.1 Clients

Each client maintains a local replica of the data set maintained by the database. All

client actions enacted on the shared data are directed to their local replica. The client

uses a number of logical clocks to aid in managing their execution and rollback:

 Client data item clock (CDI) – exists for each data item and identifies the current

version of the data item’s state held by a client. The value is used to identify when

a client’s view of the data item is out-of-date. This value is incremented by the cli-

ent when updating a data item locally or when a message is received from an ap-

plication server informing the client of a conflict.

 Client session clock (CSC) – this value is attached to every request sent to an ap-

plication server. When a client rolls back this value is incremented. This allows the

application server to ignore messages belonging to out of date sessions.

 Client action clock (CAC) – this value is incremented each time a message is sent

to an application server. This allows the application servers to recognize missing

messages from clients.

The result of an action that modifies a data item in the local replicated state results in

a message being sent to the application servers. This message contains the data item

state, the CDI of the data item, the CSC and the CAC. An execution log is maintained

and each client message is added to it. This execution log allows client rollback.

A message arriving from the application server indicates that a previous action, say

An, was not possible or client messages are missing. All application server messages

contain a session identifier. If this identifier is the same or lower than the client’s CSC

then the application server message is ignored (as the client has already rolled back –

the application server may send out multiple copies of the rollback message). How-

ever, if the session identifier is higher than the client’s CSC the client must update

their own CSC to match the new value and rollback.

If the message from the application server was sent due to missing client messages

then only an action clock and session identifier will be present (we call this the missed

message request). On receiving this message type, the client should rollback to the

action point using their execution log. However, if the application server sent the

message because of a conflicting action then this message will contain the latest state

of the data that An operated on and the new logical clock value (we call this the irrec-

oncilable message request). On receiving such a message the client halts execution

and rolls back to attempt execution from An.

Although a client will have to rollback when requested by the application server,

the receiving of an application server message also informs the client that all their

actions prior to An were successful. As such, the client can reduce the size of their

execution log to reflect this.

3.2 Application Server

The role of an application server is to manage the causal relationship between a cli-

ent’s actions and ensure a client’s local replica is eventually consistent. The applica-

tion server manages three types of logical clock to inform the client when to rollback:

 Session identifier (SI) – this is the application server’s view of a client’s CSC.

Therefore, the application server maintains an SI for each client. This is used to

disregard messages from out of date sessions from clients. The SI is incremented

by one each time a client is requested to rollback.

 Action clock (AC) – this is the application server’s view of client’s CAC. There-

fore, the application server maintains an AC for each client. This is used to identify

missing messages from a client. Every action honoured by the application server

on behalf of the client results in the AC for that client being set to the CAC belong-

ing to the client.

 Logical clock (LC) – this value is stored with the data item state at the database.

The value is requested by the application sever when an update message is re-

ceived from a client. The application server determines if a client has operated on

an out-of-date version using this value. If the action from the client was valid then

the application server updates the value at the database. Requests made to the data-

base are considered transactional; handling transactional failure is beyond the

scope of this paper (we propose the use of the technique described in [11] to handle

such issues).

A message from a client, say C1, may not be able to be honoured by the application

server due to one of the following reasons:

 Stale session – the application server’s SI belonging to C1 is less than the CSC in

C1’s message.

 Lost message – the CAC in C1’s message is two or more greater than the applica-

tion server’s AC for C1.

 Stale data – the LC for the data item the client has updated is greater than the CDI

in C1’s message.

When the application server has to rebut a client’s access, a rollback message is sent

to that client. Preparation of the rollback message depends on the state of the client as

perceived by the application server. An application server can recognize a client (C1)

in one of two modes:

 Progress – the last message received from C1 could be honoured.

 Stalled – the last message received from C1 could not be honoured or was ignored.

If C1 is in the progress state then the application server will create a new rollback

message and increment the SI for C1 by one. If the problem was due to a lost message

then the AC value for C1 is incremented by one (to indicate that rollback is required to

just after the last successful action) and is sent together with C1’s updated SI value

(this is the missed message request mentioned in section 3.1). If the problem was due

to an irreconcilable action the message sent to the client will contain the latest LC for

the data item the action attempted to access (retrieved from the database), and the

application server’s SI value for C1 (this is the irreconcilable message request men-

tioned in section 3.1). The application server moves C1 to the stalled state and records

the rollback message sent to C1 (this is called the authoritative rollback message).

If C1 is in the stalled state all the client’s messages are responded to with C1’s cur-

rent authoritative rollback message. The exception is if the received message contains

a CSC value equal to C1’s SI value held by the application server. If such a message is

received then the CAC value contained in the message is compared with the AC value

of C1 held by the application server. If it is greater (i.e., the required message from C1

is missing) the application server increments C1’s SI by one and constructs a new

authoritative rollback message to be used in response to C1. If the CAC value in the

message is equivalent to the AC value of C1 as held by the application server, and the

application server can honour this message (logical clock values are valid), then C1’s

state is moved to progress and the authoritative rollback message is discarded. If the

message cannot be honoured (it is irreconcilable), then the application server incre-

ments the SI for C1 by one and uses this together with the contents of the received

message to create a fresh authoritative rollback message, sending this to the client.

3.3 Database

The database manages the master copy of the shared data set. The data set comprises

of data items and their associated logical clock values. The data item reflects the state

while the logical clock indicates versioning information. The logical clock value is

requested by application servers to be used in determining when a client’s update

message is irreconcilable. The database accepts requests to retrieve logical clock val-

ues for data items or to update the state and logical clock values (as a result of a suc-

cessful action as determined by an application server). We assume application servers

and databases interact in standard transactional ways.

3.4 System Properties

The system design described so far can be reasoned about in the following manner:

 Liveness – Clients progress until an application server informs them that they must

rollback (via an authoritative rollback message). If this message is lost in transit the

client will continue execution, sending further access notification to the application

server. The application server will continue to send the rollback message in re-

sponse until the client responds appropriately. If the client message that is a direct

response to the authoritative rollback message goes missing the application server

will eventually realize this due to receiving client messages with the appropriate SI

values but with CAC values that are too high. This will cause the application server

to respond with an authoritative rollback message.

 Causality – A client always rolls back to where an irreconcilable action (or missing

action due to message loss) was discovered by the application server. Therefore, all

actions that are reconciled at the application server and removed from a client’s

execution log maintain the required causality. Those tentative actions in the execu-

tion log are in a state of reconciliation and may require rolling back.

 Eventually Consistent – If a client never receives a message from an application

server then either: (i) all client requests are honoured and states are mutually con-

sistent; or (ii) all application server or client messages are lost. Therefore, as long

as sufficient connectivity between client and application servers exists, the shared

data will become eventually consistent.

The system design provides opportunity for clients to progress independently of the

application server in the presence of no message loss and no irreconcilable issues on

the shared data. In reality, there will be a number of irreconcilable actions and as such

the burden of rolling back is much more substantial than other eventually consistent

optimistic approaches. This does, however, provide the benefit of not requiring any

application level dependencies in the protocol itself; the application developer does

not need to specify any exception handling facility to satisfy rollback.

4 Semantic Contention Management

We now describe our contention management scheme and how it is applied to the

system design presented in the previous section. The aim of the contention manage-

ment scheme is to attain a greater performance in the form of fewer irreconcilable

differences without hindering overall throughput.

Like all contention management schemes, we exploit a degree of predictability to

achieve improved performance. We assume that causality across actions is reflected

in the order in which a client accesses shared data items. The diagram in Fig. 2 illus-

trates this assumption.

Fig. 2. Relating client actions progressing to data items

In the simple graph shown in Figure 2 we represent three data items (a, b and c) as

vertices with two edges connecting a to b and c. The edges of the graph represent the

causal relationship between the two connected data items. So if a client performs a

successful action on data item a there is a higher than average probability that the

focus of the next action from the same client will be either data item b or c.

Each application server manages their own graph configuration representing the

data items stored within the database. Because of this graphs will diverge across ap-

plication servers. This is of no concern, as an application server must reflect the in-

session causality of its own clients, not the clients of others. We extend the system

design described in the previous section by adding the following constructs to support

the contention management framework:

 Volatility value (VV) – a value associated to each vertex of the graph indicating the

relative popularity for the given data item. The volatility for a data item in the

graph is incremented when a client’s action is successful. The volatility for the data

item that was the focus of the action is incremented by one and the neighbouring

data items (those that are connected by outgoing arcs of the original data item)

volatilities are incremented by one. Periodically, the application server will decre-

ment these values to reflect the deterioration of the volatility for nodes that are no

longer experiencing regular data access.

 Delta queue (DQ) – for those actions that could not be honoured by the application

server due to irreconcilable conflicts (out-of-date logical clock values) a backoff

period is generated as the sum of the volatility for the related data. These related

data items include the original data item for which the conflict occurred along with

the data items with the highest volatilities up to three hops away in the graph. This

client is now considered to be in a stalled state and is placed in the delta queue for

the generated backoff period. The backoff period is measured in milliseconds given

a value generated from the volatility values.

 Enhanced authoritative rollback message – when a backoff period expires for a

client residing in the delta queue, an enhanced authoritative rollback message is

sent to the client. This is an extension of the authoritative rollback message de-

scribed in the system design that includes a partial state update for the client. This

partial state update includes the latest state and logical clock values for the con-

flicting data item and the data items causally related to the original conflicting ac-

cess. Based on the assumption of causality as reflected in the graph configuration,

the aim here to pre-emptively update the client. As a result, future update messages

will have a higher chance of being valid (this cannot be guaranteed due to simulta-

neous accesses made by other clients).

The approach we have taken is a server side enhancement. This decision was taken to

alleviate clients from active participation in the contention management framework.

The client needs only to be able to handle the enhanced authoritative rollback mes-

sage that requires additional state updates to the client’s local replica.

As each application server manages their graph structure representing the data

items, should a single application server crash, client requests can be directed to an-

other working application server will little loss. Clients that originally had sessions

belonging to the crashed application server will require directing to a different appli-

cation server and there will be some additional conflicts and overhead due to the lost

session data.

4.1 Graph Reconfiguration

To satisfy the changing probabilities of causal data access over time our static graph

approach requires only minor modifications.

We introduce two new values that an application server maintains for each client:

 Happens Before Value (HBV) – the vertex representing a data item a client last

successfully accessed.

 Happens After Value (HAV) – the vertex representing a data item a client suc-

cessfully accessed directly after HBV.

If there does not exist a link between HBV and HAV then one is created. Unfortu-

nately, if we were to continue in this manner we may well end up with a fully con-

nected graph, unnecessarily increasing the load in the overall system (e.g., increased

sized enhanced authoritative rollback message). Therefore, to allow for the deletion

of edges as well as the creation of edges we make use of an additional value to record

the popularity of traversal associated to each edge in the graph:

 Edge Popularity Value (EPV) – The cumulative number of times, across all cli-

ents, a causal occurrence has occurred between a HBV and HAV.

If there already exists a link between HBV and HAV then the associated edge’s EPV

is incremented by one. This provides a scheme within which the most popular edges

will maintain the highest values. However, this may not reflect the current popularity

of the causal relations, therefore, the EPVs purpose is to prune the graph. Periodically,

the graph is searched and EPVs below a certain threshold result in the removal of

their edges. After pruning the graph all remaining edges are reset to the value 0.

Periodic pruning and resetting of EPVs provides our scheme with a basic recon-

figuration process to more appropriately reflect current semantic causal popularity.

We acknowledge that this process of reconfiguration will incur a performance cost

relative to the number of data items (vertices) and edges present in the graph. The

decision on the time between periodic reconfiguration will be based on a number of

factors: (i) the relative performance cost of the reconfiguration; (ii) the number of

client requests within the period. If the number of requests is low but reconfiguration

too frequent then edges may be removed that are still popular. Therefore, we dynami-

cally base our reconfiguration timings on changes in load.

An interesting observation of reconfiguration is it also presents a window of oppor-

tunity to alter the data items present. If this was a typical e-commerce site with items

for sale then they may be introduced as graph reconfiguration occurs. This has two

benefits: (i) introduction of items may well alter the causal relationships dramatically

(e.g., timed flash sales) and so waiting for reconfiguration would not result in unnec-

essary overhead as graph values change significantly; (ii) one can apply some applica-

tion level analysis on the effect new items have on existing data items.

5 Evaluation

Three approaches were evaluated to determine performance in terms of server side

conflicts and throughput: (1) the basic protocol as described in the system design with

no contention management; (2) the enhanced protocol with contention management

but without graph reconfigurations; (3) the enhanced protocol with both contention

management and graph reconfiguration. To create an appropriate simulation scenario

we rely on a pattern of execution for rich Internet clients similar to that described in

[16] (ecommerce end client sales).

5.1 Simulation Environment

We produced a discrete event simulation using the SimJava [15] framework. We

modeled variable client numbers, a load balancer, three application servers and a da-

tabase as processes.

Graph layouts are randomly created and client accesses are pre-generated. The ini-

tial graph layouts include vertices with and without edges. In the dynamic scenario

such a vertex may at some point become connected, but not in the static graph.

In the dynamic graph periodic reconfiguration occurred every thirty seconds with a

relaxed threshold of one. This period was determined over experimentation and was

found to provide reasonable balance between accurate causality representation and

overhead induced by reconfiguration. The relaxed threshold simply indicated edges

that had shown any causal interest would be guaranteed a starting presence in the

graph after reconfiguration.

We simulated message delay between client and application servers (load balancer)

as a random variable with a normal distribution between 1 - 50 milliseconds. Each

client performs 200 data accesses then leaves the system. Each experiment was run

five times to generate the average figures presented. The arrival rate of client messag-

es to the application server was set as ten messages per second for each client process.

The simulation was modeled with a 2% message loss probability. Database read and

writes were 3 and 6 microseconds respectively.

5.2 Evaluation 1 – Irreconcilable Client Updates (Conflicts)

Fig. 3. Irreconcilable conflicts for varying graph sizes

The graphs in figure 3 show that the inclusion of contention management lowers con-

flicts. The results also show the added benefit of graph reconfiguration over a static

graph. In addition, reconfiguration appears to approach a stable state as the contention

increases. Reconfiguration allows for the system to adapt to the changing client inter-

actions resulting in the graph more accurately reflecting semantic causality over time.

Without reconfiguration the conflicts continue to rise rather than stabilize. What has

little impact on the results is the number of data items represented in the graph. This is

due to the predictability exhibited in the client accesses: if clients accessed data at

random we would expect that graph size mattered, as there would naturally be less

conflicts.

5.3 Evaluation 2 – Throughput of successful client actions (commits)

Fig. 4. Throughput measured as commits per second for varying graph sizes

Similar to the previous set of the results, the graph size plays little role given the pre-

dictive behaviour of the clients. The results show our backoff contention management

providing the best throughput. Interestingly, without reconfiguration the system ap-

pears to reach saturation point early. With reconfiguration we still have improvement

occurring, although it is tailoring off towards 100 clients.

The results presented here indicate that backing off clients and updating their rep-

licas in a predictive manner actually improves performance: conflicts lowered and

throughput is increased. In terms of throughput alone, this is seen as a significant 30%

improvement when combined with reconfiguration. Therefore, we conclude that cau-

sality at the application layer can be exploited to improve performance for those ap-

plications where causality infringement requires rollback of local replica state.

6 Conclusion

We have described an optimistic replication scheme that makes use of dynamic con-

tention management. We base our contention manager on the popularity of data ac-

cesses and the possible semantic causal relation this may hint at within the application

layer. Our approach is wholly server based, requiring no responsibility for managing

contention from the client side (apart from affording rollback). Our approach suits

applications where causality is important and irreconcilable accesses of shared state

may cause a client to rollback accesses tentatively carried out on a local replica. Such

scenarios occur in rich Internet clients where provenance of data access is to be main-

tained or where actions of a client’s progress must be rolled back in the context of

achieving a successful client session. We describe our approach in the context of n-

tier architectures, typical in application server scenarios.

Our evaluation, via simulation, demonstrates how overall throughput is improved

by reducing irreconcilable actions on shared state. In particular, we show how adapt-

ing to changes in causal relationships during runtime based solely on access patterns

of clients provide greatest improvements in throughput.

This is the first time runtime adaptability of causality informed contention man-

agement has been demonstrated in a complete solution exhibiting eventual synchro-

nous guarantees. As such, we believe that this is not only a useful contribution to the

literature, but opens new avenues of research by bringing the notion of contention

management to replication protocols.

We acknowledge that our approach is focussed on a particular application type:

applications that always rollback to where conflict was detected. However, we believe

that advocating contention management as an aid to performance for eventually con-

sistent replicated state in general would be beneficial and worthy of future explora-

tion.

Future work will focus on peer-to-peer based evaluation and creating contention

management schemes suitable for mobile environments (where epidemic models of

communication are favoured). A further opportunity of exploration will be in taking

the semantic awareness properties of this work back to transactional memory systems

themselves.

References

1. Scherer III, W N., Scott M., L.: Contention Management in Dynamic Software Transac-

tional Memory. In: PODC Workshop on Concurrency and Synchronization in Java pro-

grams, pp. 70-79 (2004)

2. Scherer III, W. N., Scott. M., L.: Advanced Contention Management for Dynamic Soft-

ware Transactional Memory. In: Proceedings of the 24th Annual ACM Symposium on

Principles of Distributed Computing, pp. 240-248. ACM, New York (2005)

3. Saito, Y., Shapiro, M.: Optimistic Replication. ACM Computing Surveys. 37, 42–81

(2005)

4. Vogels, W.: Eventually Consistent. Communications of the ACM. 52, 40–44 (2009)

5. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System. ACM

SIGOPS Operating Systems Review 44, pp. 35–40 (2010)

6. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., Vogels. W.: Dynamo: Amazon’s Highly Available

Key-Value Store. In: 21st ACM SIGOPS Symposium on Operating Systems Principles,

pp. 205–220. ACM, New York (2007)

7. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser, C.H.:

Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In:

15th ACM Symposium on Operating Systems Principles, pp. 172–182. ACM, New York

(1995)

8. Kermarrec, A., Rowstron, A., Shapiro, M., Druschel, P.: The IceCube Approach to the

Reconciliation of Divergent Replicas. In: 20th Annual ACM Symposium on Principles of

Distributed Computing, pp. 210–218. ACM, New York (2001)

9. Pregui¸ca, N., Shapiro, M., Matheson, C.: Semantics-Based Reconciliation for Collabora-

tive and Mobile Environments. In: Meersman, R., Tari, Z., Schmidt, D. (eds.) On The

Move to Meaningful Internet Systems 2003. LNCS, vol. 2888, pp. 38–55. Springer, Hei-

delberg (2003)

10. Abushnagh, Y., Brook, M., Sharp, C., Ushaw, G., Morgan, G.: Liana: A Framework that

Utilizes Causality to Schedule Contention Management across Networked Systems. In:

Meersman, R. et al. On The Move to Meaningful Internet Systems 2012. LNCS, vol. 7566,

pp. 871-878. Springer, Heidelberg (2012)

11. Kistijantoro, A. I., Morgan, G., Shrivastava, S. K., & Little, M. C.: Enhancing an Applica-

tion Server to Support Available Components. In: IEEE Transactions on Software Engi-

neering, 34(4), 531-545 (2008)

12. Herlihy, M., & Moss, J. E. B.: Transactional Memory: Architectural Support for Lock-free

Data Structures. In: Proceedings of the 20th Annual International Symposium on Computer

Architecture, vol. 21, no. 2, pp. 289-300. ACM, New York (1993)

13. Herlihy, M., Luchangco, V., Moir, M., & Scherer III, W. N.: Software Transactional

Memory for Dynamic-sized Data Structures. In: Proceedings of the 22nd Annual Sympo-

sium on Principles of Distributed Computing. pp. 92-101. ACM, New York (2003)

14. Guerraoui, R., Herlihy, M., & Pochon, B.: Polymorphic Contention Management. In: 19th

International Symposium on Distributed Computing, pp. 303-323. Springer (2005)

15. University of Edinburgh, SimJava. Available at:

http://www.dcs.ed.ac.uk/home/hase/simjava/ (Accessed: 16 February 2013)

16. Clarke, D., Morgan, G.: E-Commerce with Rich Clients and Flexible Transactions. In:

First International Workshop on Software Technologies for Future Dependable Distributed

Systems, pp. 73-77, IEEE (2009)

http://www.dcs.ed.ac.uk/home/hase/simjava/

